A novel NGS-based microsatellite instability (MSI) status classifier with 9 loci for colorectal cancer patients

With the recent emergence of immune checkpoint inhibitors, microsatellite instability (MSI) status has become an important biomarker for immune checkpoint blockade therapy. There are growing technical demands for the integration of different genomic alterations profiling including MSI analysis in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of translational medicine 2020-05, Vol.18 (1), p.215-215, Article 215
Hauptverfasser: Zheng, Kai, Wan, Hua, Zhang, Jie, Shan, Guangyu, Chai, Ningning, Li, Dongdong, Fang, Nan, Liu, Lina, Zhang, Jingbo, Du, Rong, Wu, Qixi, Li, Xichuan, Zhang, Chunze
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the recent emergence of immune checkpoint inhibitors, microsatellite instability (MSI) status has become an important biomarker for immune checkpoint blockade therapy. There are growing technical demands for the integration of different genomic alterations profiling including MSI analysis in a single assay for full use of the limited tissues. Tumor and paired control samples from 64 patients with primary colorectal cancer were enrolled in this study, including 14 MSI-high (MSI-H) cases and 50 microsatellite stable (MSS) cases determined by MSI-PCR. All the samples were sequenced by a customized NGS panel covering 2.2 MB. A training dataset of 28 samples was used for selection of microsatellite loci and a novel NGS-based MSI status classifier, USCI-msi, was developed. NGS-based MSI status, single nucleotide variant (SNV) and tumor mutation burden (TMB) were detected for all patients. Most of the patients were also independently detected by immunohistochemistry (IHC) staining. A 9-loci model for detecting microsatellite instability was able to correctly predict MSI status with 100% sensitivity and specificity compared with MSI-PCR, and 84.3% overall concordance with IHC staining. Mutations in cancer driver genes (APC, TP53, and KRAS) were dispersed in MSI-H and MSS cases, while BRAF p.V600E and frameshifts in TCF7L2 gene occurred only in MSI-H cases. Mismatch repair (MMR)-related genes are highly mutated in MSI-H samples. We established a new NGS-based MSI classifier, USCI-msi, with as few as 9 microsatellite loci for detecting MSI status in CRC cases. This approach possesses 100% sensitivity and specificity, and performed robustly in samples with low tumor purity.
ISSN:1479-5876
1479-5876
DOI:10.1186/s12967-020-02373-1