Structural Characterization and Immunoenhancing Properties of Polysaccharide CPTM-P1 from Taxus media

Polysaccharides extracted from hrough an aqueous method were further refined by removing proteins via the Sevag technique and purified by dialysis. The separation of these polysaccharides was accomplished using a DEAE-cellulose chromatog-raphy column, yielding two distinct fractions, named CPTM-P1 a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2024-03, Vol.29 (6), p.1370
Hauptverfasser: Fan, Jiangtao, Huang, Xiong, Dou, Mengke, Tang, Shuqin, Wang, Gang, Fan, Yijun, Luo, Aoxue, Wang, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polysaccharides extracted from hrough an aqueous method were further refined by removing proteins via the Sevag technique and purified by dialysis. The separation of these polysaccharides was accomplished using a DEAE-cellulose chromatog-raphy column, yielding two distinct fractions, named CPTM-P1 and CPTM-P2. Notably, CPTM-P1 emerged as the primary polysaccharide component within . Consequently, a comprehensive analysis focusing exclusively on CPTM-P1 was undertaken. The molecular weight of CPTM-P1 was established through gel permeation chromatography (GPC), and its monosaccharide composition was deciphered using HPLC-MS. The structure was further elucidated through nuclear magnetic resonance (NMR) spectroscopy. The molecular weight of CPTM-P1 was determined to be 968.7 kDa. The monosaccharide composition consisted of galactose (Gal), arabinose (Ara), galacturonic acid (Gal-UA), glucose (Glc), rhamnose (Rha), xylose (Xyl), mannose (Man), fucose (Fuc), glucuronic acid (Glc-UA), and ribose (Rib). The proportional distribution of these components was 30.53%, 22.00%, 5.63%, 11.67%, 11.93%, 1.69%, 8.50%, 1.23%, 5.63%, and 1.17%, respectively. This confirmed CPTM-P1 as an acidic heteropolysaccharide with a glycuronic acid backbone. Moreover, CPTM-P1 showed immunoenhancing properties, effectively augmenting the secretion of nitric oxide and cytokines (TNF-α, IL-1β, and IL-6). Additionally, it significantly enhances the phagocytic capacity of RAW264.7 cells. These findings underscore the potential application of these polysaccharides in functional foods and pharmaceuticals, providing a solid scientific basis for further exploration and utilization of polysaccharides.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules29061370