An improvement to the John-Nirenberg inequality for functions in critical Sobolev spaces

It is known that functions in a Sobolev space with critical exponent embed into the space of functions of bounded mean oscillation, and therefore satisfy the John-Nirenberg inequality and a corresponding exponential integrability estimate. While these inequalities are optimal for general functions o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in nonlinear analysis 2021-01, Vol.10 (1), p.877-894
Hauptverfasser: Martínez, Ángel D., Spector, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is known that functions in a Sobolev space with critical exponent embed into the space of functions of bounded mean oscillation, and therefore satisfy the John-Nirenberg inequality and a corresponding exponential integrability estimate. While these inequalities are optimal for general functions of bounded mean oscillation, the main result of this paper is an improvement for functions in a class of critical Sobolev spaces. Precisely, we prove the inequality for all and any is the Hausdorff content, ) is a Lorentz space with ∈ (1,∞], = /( − 1) is the Hölder conjugate to , and denotes the Riesz potential of of order ∈ (0, ).
ISSN:2191-9496
2191-950X
DOI:10.1515/anona-2020-0157