An improvement to the John-Nirenberg inequality for functions in critical Sobolev spaces
It is known that functions in a Sobolev space with critical exponent embed into the space of functions of bounded mean oscillation, and therefore satisfy the John-Nirenberg inequality and a corresponding exponential integrability estimate. While these inequalities are optimal for general functions o...
Gespeichert in:
Veröffentlicht in: | Advances in nonlinear analysis 2021-01, Vol.10 (1), p.877-894 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is known that functions in a Sobolev space with critical exponent embed into the space of functions of bounded mean oscillation, and therefore satisfy the John-Nirenberg inequality and a corresponding exponential integrability estimate. While these inequalities are optimal for general functions of bounded mean oscillation, the main result of this paper is an improvement for functions in a class of critical Sobolev spaces. Precisely, we prove the inequality
for all
and any
is the Hausdorff content,
) is a Lorentz space with
∈ (1,∞],
=
/(
− 1) is the Hölder conjugate to
, and
denotes the Riesz potential of
of order
∈ (0,
). |
---|---|
ISSN: | 2191-9496 2191-950X |
DOI: | 10.1515/anona-2020-0157 |