On the growth of solutions of second order linear complex differential equations whose coefficients satisfy certain conditions
In this paper, we study the growth of solutions of the second order linear complex differential equations f''+A(z)f'+B(z)f=0 insuring that any nontrivial solutions are of infinite order. It is assumed that the coefficients satisfy the extremal condition for Yang’s inequality and the e...
Gespeichert in:
Veröffentlicht in: | Baghdad Science Journal. 2020-01, Vol.17 (2), p.530-536 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | ara ; eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the growth of solutions of the second order linear complex differential equations f''+A(z)f'+B(z)f=0 insuring that any nontrivial solutions are of infinite order. It is assumed that the coefficients satisfy the extremal condition for Yang’s inequality and the extremal condition for Denjoy’s conjecture. The other condition is that one of the coefficients itself is a solution of the differential equation f''+P(z)f=0. |
---|---|
ISSN: | 2078-8665 2411-7686 2411-7986 |
DOI: | 10.21123/bsj.2020.17.2.0530 |