Starlikeness Condition for a New Differential-Integral Operator
A new differential-integral operator of the form I n f ( z ) = ( 1 − λ ) S n f ( z ) + λ L n f ( z ) , z ∈ U , f ∈ A , 0 ≤ λ ≤ 1 , n ∈ N is introduced in this paper, where S n is the Sălăgean differential operator and L n is the Alexander integral operator. Using this operator, a new integral operat...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2020-05, Vol.8 (5), p.694 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new differential-integral operator of the form I n f ( z ) = ( 1 − λ ) S n f ( z ) + λ L n f ( z ) , z ∈ U , f ∈ A , 0 ≤ λ ≤ 1 , n ∈ N is introduced in this paper, where S n is the Sălăgean differential operator and L n is the Alexander integral operator. Using this operator, a new integral operator is defined as: F ( z ) = β + γ z γ ∫ 0 z I n f ( z ) · t β + γ − 2 d t 1 β , where I n f ( z ) is the differential-integral operator given above. Using a differential subordination, we prove that the integral operator F ( z ) is starlike. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math8050694 |