Factorization by quantum annealing using superconducting flux qubits implementing a multiplier Hamiltonian

Prime factorization ( P  =  M  ×  N ) is a promising application for quantum computing. Shor’s algorithm is a key concept for breaking the limit for analyzing P , which cannot be effectively solved by classical computation; however, the algorithm requires error-correctable logical qubits. Here, we d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-08, Vol.12 (1), p.13669-13669, Article 13669
Hauptverfasser: Saida, Daisuke, Hidaka, Mutsuo, Imafuku, Kentaro, Yamanashi, Yuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prime factorization ( P  =  M  ×  N ) is a promising application for quantum computing. Shor’s algorithm is a key concept for breaking the limit for analyzing P , which cannot be effectively solved by classical computation; however, the algorithm requires error-correctable logical qubits. Here, we describe a quantum annealing method for solving prime factorization. A superconducting quantum circuit with native implementation of the multiplier Hamiltonian provides combinations of M and N as a solution for number P after annealing. This circuit is robust and can be expanded easily to scale up the analysis. We present an experimental and theoretical exploration of the multiplier unit. We demonstrate the 2-bit factorization in a circuit simulation and experimentally at 10 mK. We also explain how the current conditions can be used to obtain high success probability and all candidate factorized elements.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-17867-9