Impact of gut microbiota on metabolic syndrome and its comprising traits: a two-sample mendelian randomization study

The prevalence of metabolic syndrome is on the rise globally. Understanding the etiology and discovering potential treatment target have become a priority. Observational data have linked gut microbiota with metabolic syndrome and its comprising traits. However, whether these relations underlie causa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetology and metabolic syndrome 2024-11, Vol.16 (1), p.279-10, Article 279
Hauptverfasser: Zhang, Yaodong, Fan, Jinhai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The prevalence of metabolic syndrome is on the rise globally. Understanding the etiology and discovering potential treatment target have become a priority. Observational data have linked gut microbiota with metabolic syndrome and its comprising traits. However, whether these relations underlie causal effects remains unclear. Using Inver Variance Weighted (IVW) as primary analysis method, we performed two-sample Mendelian Randomization (MR) analyses to explore the causal relationship between gut microbiota and metabolic syndrome with its comprising traits. Methods including MR-Egger regression, MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO), Weighted Mode, and Weighted Median were chosen for additional MR analysis to test the robustness of MR results. Cochran's IVW Q test and leave-one-out IVW analysis tested the heterogeneity among instrumental variables (IVs). Steiger filtering was utilized to exclude all IVs with reverse causality. Genome-wide association study (GWAS) data used in this study were all from the largest respective GWAS studies available. Out of 1172 tests, a total of 16 associations with evidence of causality were identified after sensitivity analyses, but only 3 remained after multiple testing correction. Class Melainabacteria (β = 0.02, adjusted P = 0.01) with affiliated order Gastranaerophilales (β = 0.02, adjusted P = 1.20*10 ) and genus Eubacterium hallii (β = 0.03, adjusted P = 0.03) showed a positive effect on abdominal obesity. All effect sizes were small (abs(β) 
ISSN:1758-5996
1758-5996
DOI:10.1186/s13098-024-01520-8