MECHANICAL PROPERTIES OF FORGED TUNGSTEN HEAVY ALLOYS
Tungsten heavy alloys are composite materials containing spherical tungsten particles embedded in binder matrix. Their excellent mechanical properties can be further improved by rotary forging. This paper aims to gain deeper understanding of the forging process by investigating the local elastic mod...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tungsten heavy alloys are composite materials containing spherical tungsten particles embedded in binder matrix. Their excellent mechanical properties can be further improved by rotary forging. This paper aims to gain deeper understanding of the forging process by investigating the local elastic modulus, hardness, and residual stress of individual phases in W6Ni3Co pseudo-alloy. The resulting global properties of the composite material such as stress-strain behavior, fracture toughness and fatigue crack growth rate behavior are also studied. The results show that sintered and quenched material consists of highly textured matrix containing nearly perfect single crystal spheres of pure W. The rotary forging leads to significant lattice deformations destroying the texture and significantly increasing the hardness of both WNiCo matrix and W particles and making residual stresses in W particles anisotropic with increased compression along the longitudinal axis of the forged part. |
---|---|
ISSN: | 2336-5382 2336-5382 |
DOI: | 10.14311/APP.2020.27.0149 |