Computational systems biology in disease modeling and control, review and perspectives

Omics-based approaches have become increasingly influential in identifying disease mechanisms and drug responses. Considering that diseases and drug responses are co-expressed and regulated in the relevant omics data interactions, the traditional way of grabbing omics data from single isolated layer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ systems biology and applications 2022-10, Vol.8 (1), p.1-16, Article 37
Hauptverfasser: Yue, Rongting, Dutta, Abhishek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Omics-based approaches have become increasingly influential in identifying disease mechanisms and drug responses. Considering that diseases and drug responses are co-expressed and regulated in the relevant omics data interactions, the traditional way of grabbing omics data from single isolated layers cannot always obtain valuable inference. Also, drugs have adverse effects that may impair patients, and launching new medicines for diseases is costly. To resolve the above difficulties, systems biology is applied to predict potential molecular interactions by integrating omics data from genomic, proteomic, transcriptional, and metabolic layers. Combined with known drug reactions, the resulting models improve medicines’ therapeutical performance by re-purposing the existing drugs and combining drug molecules without off-target effects. Based on the identified computational models, drug administration control laws are designed to balance toxicity and efficacy. This review introduces biomedical applications and analyses of interactions among gene, protein and drug molecules for modeling disease mechanisms and drug responses. The therapeutical performance can be improved by combining the predictive and computational models with drug administration designed by control laws. The challenges are also discussed for its clinical uses in this work.
ISSN:2056-7189
2056-7189
DOI:10.1038/s41540-022-00247-4