Molecular architecture of fungal cell walls revealed by solid-state NMR
The high mortality of invasive fungal infections, and the limited number and inefficacy of antifungals necessitate the development of new agents with novel mechanisms and targets. The fungal cell wall is a promising target as it contains polysaccharides absent in humans, however, its molecular struc...
Gespeichert in:
Veröffentlicht in: | Nature communications 2018-07, Vol.9 (1), p.2747-12, Article 2747 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The high mortality of invasive fungal infections, and the limited number and inefficacy of antifungals necessitate the development of new agents with novel mechanisms and targets. The fungal cell wall is a promising target as it contains polysaccharides absent in humans, however, its molecular structure remains elusive. Here we report the architecture of the cell walls in the pathogenic fungus
Aspergillus fumigatus
. Solid-state NMR spectroscopy, assisted by dynamic nuclear polarization and glycosyl linkage analysis, reveals that chitin and α-1,3-glucan build a hydrophobic scaffold that is surrounded by a hydrated matrix of diversely linked β-glucans and capped by a dynamic layer of glycoproteins and α-1,3-glucan. The two-domain distribution of α-1,3-glucans signifies the dual functions of this molecule: contributing to cell wall rigidity and fungal virulence. This study provides a high-resolution model of fungal cell walls and serves as the basis for assessing drug response to promote the development of wall-targeted antifungals.
Aspergillus fumigatus
is a pathogenic fungus. Here the authors perform solid-state NMR measurements with intact
Aspergillus
cells, which provides insights into cell wall composition and dynamics and propose a structural model for fungal cell walls. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-018-05199-0 |