Merging High-Resolution Satellite Surface Radiation Data with Meteorological Sunshine Duration Observations over China from 1983 to 2017

Surface solar radiation (Rs) is essential to climate studies. Thanks to long-term records from the Advanced Very High-Resolution Radiometers (AVHRR), the recent release of International Satellite Cloud Climatology Project (ISCCP) HXG cloud products provide a promising opportunity for building long-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2021-02, Vol.13 (4), p.602
Hauptverfasser: Feng, Fei, Wang, Kaicun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface solar radiation (Rs) is essential to climate studies. Thanks to long-term records from the Advanced Very High-Resolution Radiometers (AVHRR), the recent release of International Satellite Cloud Climatology Project (ISCCP) HXG cloud products provide a promising opportunity for building long-term Rs data with high resolutions (3 h and 10 km). In this study, we compare three satellite Rs products based on AVHRR cloud products over China from 1983 to 2017 with direct observations of Rs and sunshine duration (SunDu)-derived Rs. The results show that SunDu-derived Rs have higher accuracy than the direct observed Rs at time scales of a month or longer by comparing with the satellite Rs products. SunDu-derived Rs is available from the 1960s at more than 2000 stations over China, which provides reliable decadal estimations of Rs. However, the three AVHRR-based satellite Rs products have significant biases in quantifying the trend of Rs from 1983 to 2016 (−4.28 W/m2/decade to 2.56 W/m2/decade) due to inhomogeneity in satellite cloud products and the lack of information on atmospheric aerosol optical depth. To adjust the inhomogeneity of the satellite Rs products, we propose a geographically weighted regression fusion method (HGWR) to merge ISCCP-HXG Rs with SunDu-derived Rs. The merged Rs product over China from 1983 to 2017 with a spatial resolution of 10 km produces nearly the same trend as that of the SunDu-derived Rs. This study makes a first attempt to adjust the inhomogeneity of satellite Rs products and provides the merged high-resolution Rs product from 1983 to 2017 over China, which can be downloaded freely.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs13040602