Synthesis, In Vitro Biological Evaluation and In Silico Molecular Docking Studies of Indole Based Thiadiazole Derivatives as Dual Inhibitor of Acetylcholinesterase and Butyrylchloinesterase

The current study was conducted to obtain hybrid analogues of indole-based thiadiazole derivatives (1–16) in which a number of reaction steps were involved. To examine their biological activity in the presence of the reference drug Donepezil (0.21 ± 0.12 and 0.30 ± 0.32 M, respectively), the inhibit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2022-10, Vol.27 (21), p.7368
Hauptverfasser: Khan, Shoaib, Iqbal, Shahid, Taha, Muhammad, Rahim, Fazal, Shah, Mazloom, Ullah, Hayat, Bahadur, Ali, Alrbyawi, Hamad, Dera, Ayed A, Alahmdi, Mohammed Issa, Pashameah, Rami Adel, Alzahrani, Eman, Farouk, Abd-ElAziem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The current study was conducted to obtain hybrid analogues of indole-based thiadiazole derivatives (1–16) in which a number of reaction steps were involved. To examine their biological activity in the presence of the reference drug Donepezil (0.21 ± 0.12 and 0.30 ± 0.32 M, respectively), the inhibitory potentials of AChE and BuChE were determined for these compounds. Different substituted derivatives showing a varied range of inhibitory profiles, when compared to the reference drug, analogue 8 was shown to have potent activity, with IC50 values for AchE 0.15 ± 0.050 M and BuChE 0.20 ± 0.10, respectively, while other substituted compounds displayed good to moderate potentials. Varied spectroscopic techniques including 1H, 13CNMR and HREI-MS were used to identify the basic skeleton of these compounds. Furthermore, all analogues have a known structure–activity relationship (SAR), and molecular docking investigations have verified the binding interactions of molecule to the active site of enzymes.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules27217368