Determination of mechanical behaviors of different furniture assemblies by digital image correlation method
Research and development work has become a critical issue in all industries, with the intensification of global competition. It is important for the furniture industry to understand the deformation behavior of joints for durable and quality production. Optical methods in mechanical science provide q...
Gespeichert in:
Veröffentlicht in: | Turkish Journal of Forestry (Online) 2018-12, Vol.19 (4), p.419-427 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Research and development work has become a critical issue in all industries, with the intensification of global competition. It is important for the furniture industry to understand the deformation behavior of joints for durable and quality production. Optical methods in mechanical science provide quick and accurate information about solid materials without contact. In this study, the mechanical properties and deformation behaviors on different furniture joint were analyzed under bending and tensile loads using digital image correlation method (DIC). The commonly used butterfly, nailed trapeze and minifixed joining methods have been chosen for analyses in the boxed construction furniture. Medium density fiberboard (MDF), particleboard (YL) and laminar coated particleboard (LY) were used to form the furniture joints. As a result of the study, it was determined that the joint and material types affected the amount of strain and displacement. According to the results of the experiment, the highest tensile and tensile strength of the material type is given by the Fibreboard. The butterfly joint in the joint type has the best result. It has been found that the DIC method can be used as a useful tool for the optimization of joints in the furniture design. |
---|---|
ISSN: | 2149-3898 |
DOI: | 10.18182/tjf.426005 |