Improving the Accuracy of Tesseract 4.0 OCR Engine Using Convolution-Based Preprocessing

Optical Character Recognition (OCR) is the process of identifying and converting texts rendered in images using pixels to a more computer-friendly representation. The presented work aims to prove that the accuracy of the Tesseract 4.0 OCR engine can be further enhanced by employing convolution-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2020-05, Vol.12 (5), p.715
Hauptverfasser: Sporici, Dan, Cușnir, Elena, Boiangiu, Costin-Anton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optical Character Recognition (OCR) is the process of identifying and converting texts rendered in images using pixels to a more computer-friendly representation. The presented work aims to prove that the accuracy of the Tesseract 4.0 OCR engine can be further enhanced by employing convolution-based preprocessing using specific kernels. As Tesseract 4.0 has proven great performance when evaluated against a favorable input, its capability of properly detecting and identifying characters in more realistic, unfriendly images is questioned. The article proposes an adaptive image preprocessing step guided by a reinforcement learning model, which attempts to minimize the edit distance between the recognized text and the ground truth. It is shown that this approach can boost the character-level accuracy of Tesseract 4.0 from 0.134 to 0.616 (+359% relative change) and the F1 score from 0.163 to 0.729 (+347% relative change) on a dataset that is considered challenging by its authors.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym12050715