Metal–Organic Framework‐Surface‐Enhanced Infrared Absorption Platform Enables Simultaneous On‐Chip Sensing of Greenhouse Gases
Simultaneous on‐chip sensing of multiple greenhouse gases in a complex gas environment is highly desirable in industry, agriculture, and meteorology, but remains challenging due to their ultralow concentrations and mutual interference. Porous microstructure and extremely high surface areas in metal–...
Gespeichert in:
Veröffentlicht in: | Advanced science 2020-10, Vol.7 (20), p.2001173-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Simultaneous on‐chip sensing of multiple greenhouse gases in a complex gas environment is highly desirable in industry, agriculture, and meteorology, but remains challenging due to their ultralow concentrations and mutual interference. Porous microstructure and extremely high surface areas in metal–organic frameworks (MOFs) provide both excellent adsorption selectivity and high gases affinity for multigas sensing. Herein, it is described that integrating MOFs into a multiresonant surface‐enhanced infrared absorption (SEIRA) platform can overcome the shortcomings of poor selectivity in multigas sensing and enable simultaneous on‐chip sensing of greenhouse gases with ultralow concentrations. The strategy leverages the near‐field intensity enhancement (over 1500‐fold) of multiresonant SEIRA technique and the outstanding gas selectivity and affinity of MOFs. It is experimentally demonstrated that the MOF–SEIRA platform achieves simultaneous on‐chip sensing of CO2 and CH4 with fast response time ( |
---|---|
ISSN: | 2198-3844 2198-3844 |
DOI: | 10.1002/advs.202001173 |