Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data

Spatial transcriptomics maps gene expression across tissues, posing the challenge of determining the spatial arrangement of different cell types. However, spatial transcriptomics spots contain multiple cells. Therefore, the observed signal comes from mixtures of cells of different types. Here, we pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2023-05, Vol.24 (1), p.120-120, Article 120
Hauptverfasser: Geras, Agnieszka, Darvish Shafighi, Shadi, Domżał, Kacper, Filipiuk, Igor, Rączkowski, Łukasz, Szymczak, Paulina, Toosi, Hosein, Kaczmarek, Leszek, Koperski, Łukasz, Lagergren, Jens, Nowis, Dominika, Szczurek, Ewa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spatial transcriptomics maps gene expression across tissues, posing the challenge of determining the spatial arrangement of different cell types. However, spatial transcriptomics spots contain multiple cells. Therefore, the observed signal comes from mixtures of cells of different types. Here, we propose an innovative probabilistic model, Celloscope, that utilizes established prior knowledge on marker genes for cell type deconvolution from spatial transcriptomics data. Celloscope outperforms other methods on simulated data, successfully indicates known brain structures and spatially distinguishes between inhibitory and excitatory neuron types based in mouse brain tissue, and dissects large heterogeneity of immune infiltrate composition in prostate gland tissue.
ISSN:1474-760X
1474-7596
1465-6906
1474-760X
DOI:10.1186/s13059-023-02951-8