Strong Law of Large Numbers of Pettis-Integrable Multifunctions

Using reversed martingale techniques, we prove the strong law of large numbres for independent Pettis-integrable multifunctions with convex weakly compact values in a Banach space. The Mosco convergence of reversed Pettis-integrable martingale of the form (EBnX)n≥1, where (Bn)n≥1 is a decreasing seq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Mathematics 2019-01, Vol.2019 (2019), p.1-7
Hauptverfasser: Oulghazi, Hamid, Ezzaki, Fatima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using reversed martingale techniques, we prove the strong law of large numbres for independent Pettis-integrable multifunctions with convex weakly compact values in a Banach space. The Mosco convergence of reversed Pettis-integrable martingale of the form (EBnX)n≥1, where (Bn)n≥1 is a decreasing sequence of the sub σ-algebra of F is provided.
ISSN:2314-4629
2314-4785
DOI:10.1155/2019/9456167