Strong Law of Large Numbers of Pettis-Integrable Multifunctions
Using reversed martingale techniques, we prove the strong law of large numbres for independent Pettis-integrable multifunctions with convex weakly compact values in a Banach space. The Mosco convergence of reversed Pettis-integrable martingale of the form (EBnX)n≥1, where (Bn)n≥1 is a decreasing seq...
Gespeichert in:
Veröffentlicht in: | Journal of Mathematics 2019-01, Vol.2019 (2019), p.1-7 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using reversed martingale techniques, we prove the strong law of large numbres for independent Pettis-integrable multifunctions with convex weakly compact values in a Banach space. The Mosco convergence of reversed Pettis-integrable martingale of the form (EBnX)n≥1, where (Bn)n≥1 is a decreasing sequence of the sub σ-algebra of F is provided. |
---|---|
ISSN: | 2314-4629 2314-4785 |
DOI: | 10.1155/2019/9456167 |