Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice

Brain communication, defined as information transmission through white-matter connections, is at the foundation of the brain’s computational capacities that subtend almost all aspects of behavior: from sensory perception shared across mammalian species, to complex cognitive functions in humans. How...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-12, Vol.14 (1), p.8216-8216, Article 8216
Hauptverfasser: Griffa, Alessandra, Mach, Mathieu, Dedelley, Julien, Gutierrez-Barragan, Daniel, Gozzi, Alessandro, Allali, Gilles, Grandjean, Joanes, Van De Ville, Dimitri, Amico, Enrico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Brain communication, defined as information transmission through white-matter connections, is at the foundation of the brain’s computational capacities that subtend almost all aspects of behavior: from sensory perception shared across mammalian species, to complex cognitive functions in humans. How did communication strategies in macroscale brain networks adapt across evolution to accomplish increasingly complex functions? By applying a graph- and information-theory approach to assess information-related pathways in male mouse, macaque and human brains, we show a brain communication gap between selective information transmission in non-human mammals, where brain regions share information through single polysynaptic pathways, and parallel information transmission in humans, where regions share information through multiple parallel pathways. In humans, parallel transmission acts as a major connector between unimodal and transmodal systems. The layout of information-related pathways is unique to individuals across different mammalian species, pointing at the individual-level specificity of information routing architecture. Our work provides evidence that different communication patterns are tied to the evolution of mammalian brain networks. Differences in information transmission in the brain network between humans and other species are not well understood. Here, the authors apply an information theory approach to structural connectomes and functional MRI and report that human brain networks display more evidence of parallel information transmission compared to macaques and mice.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-43971-z