Anti-shake positioning algorithm of bridge crane based on phase plane analysis

In this study, the dynamic model of bridge crane system is established based on Lagrange equation. The transfer function of crane running system is derived. A new crane anti-swaying scheme different from traditional mechanical anti-shake strategy is proposed and it is based on phase plane analysis a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering (Stevenage, England) England), 2019-11, Vol.2019 (22), p.8370-8373
Hauptverfasser: Zhu, Yuxuan, Niu, Dan, Li, Qi, Chen, Youcheng, Wei, Shuang, Liu, Jinbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, the dynamic model of bridge crane system is established based on Lagrange equation. The transfer function of crane running system is derived. A new crane anti-swaying scheme different from traditional mechanical anti-shake strategy is proposed and it is based on phase plane analysis algorithm. By the adaptive speed planning method, the industrial grade bridge crane can calculate different motion trajectories online without any off-line optimisation calculation under the given acceleration and maximum speed limit conditions. At the same time, the industrial grade bridge crane realises the purpose of anti-sway and positioning of the crane. The field experiment results show that the swing of the crane is obviously suppressed and the positioning accuracy fully meets the industrial requirements when the load of the crane reaches the target position.
ISSN:2051-3305
2051-3305
DOI:10.1049/joe.2019.1083