SafeDrive: Hybrid Recommendation System Architecture for Early Safety Predication Using Internet of Vehicles
The Internet of vehicles (IoV) is a rapidly emerging technological evolution of Intelligent Transportation System (ITS). This paper proposes SafeDrive, a dynamic driver profile (DDP) using a hybrid recommendation system. DDP is a set of functional modules, to analyses individual driver’s behaviors,...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2021-06, Vol.21 (11), p.3893 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Internet of vehicles (IoV) is a rapidly emerging technological evolution of Intelligent Transportation System (ITS). This paper proposes SafeDrive, a dynamic driver profile (DDP) using a hybrid recommendation system. DDP is a set of functional modules, to analyses individual driver’s behaviors, using prior violation and accident records, to identify driving risk patterns. In this paper, we have considered three synthetic data-sets for 1500 drivers based on their profile information, risk parameters information, and risk likelihood. In addition, we have also considered the driver’s historical violation/accident data-set records based on four risk-score levels such as high-risk, medium-risk, low-risk, and no-risk to predict current and future driver risk scores. Several error calculation methods have been applied in this study to analyze our proposed hybrid recommendation systems’ performance to classify the driver’s data with higher accuracy based on various criteria. The evaluated results help to improve the driving behavior and broadcast early warning alarm to the other vehicles in IoV environment for the overall road safety. Moreover, the propoed model helps to provide a safe and predicted environment for vehicles, pedestrians, and road objects, with the help of regular monitoring of vehicle motion, driver behavior, and road conditions. It also enables accurate prediction of accidents beforehand, and also minimizes the complexity of on-road vehicles and latency due to fog/cloud computing servers. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s21113893 |