A missense in HSF2BP causing primary ovarian insufficiency affects meiotic recombination by its novel interactor C19ORF57/BRME1
Primary Ovarian Insufficiency (POI) is a major cause of infertility, but its etiology remains poorly understood. Using whole-exome sequencing in a family with three cases of POI, we identified the candidate missense variant S167L in , an essential meiotic gene. Functional analysis of the HSF2BP-S167...
Gespeichert in:
Veröffentlicht in: | eLife 2020-08, Vol.9 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Primary Ovarian Insufficiency (POI) is a major cause of infertility, but its etiology remains poorly understood. Using whole-exome sequencing in a family with three cases of POI, we identified the candidate missense variant S167L in
, an essential meiotic gene. Functional analysis of the HSF2BP-S167L variant in mouse showed that it behaves as a hypomorphic allele compared to a new loss-of-function (knock-out) mouse model.
females show reduced fertility with smaller litter sizes. To obtain mechanistic insights, we identified C19ORF57/BRME1 as a strong interactor and stabilizer of HSF2BP and showed that the BRME1/HSF2BP protein complex co-immunoprecipitates with BRCA2, RAD51, RPA and PALB2. Meiocytes bearing the HSF2BP-S167L variant showed a strongly decreased staining of both HSF2BP and BRME1 at the recombination nodules and a reduced number of the foci formed by the recombinases RAD51/DMC1, thus leading to a lower frequency of crossovers. Our results provide insights into the molecular mechanism of HSF2BP-S167L in human ovarian insufficiency and sub(in)fertility. |
---|---|
ISSN: | 2050-084X 2050-084X |
DOI: | 10.7554/ELIFE.56996 |