An automated and combinative method for the predictive ranking of candidate effector proteins of fungal plant pathogens

Fungal plant-pathogens promote infection of their hosts through the release of ‘effectors’—a broad class of cytotoxic or virulence-promoting molecules. Effectors may be recognised by resistance or sensitivity receptors in the host, which can determine disease outcomes. Accurate prediction of effecto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-10, Vol.11 (1), p.19731-19731, Article 19731
Hauptverfasser: Jones, Darcy A. B., Rozano, Lina, Debler, Johannes W., Mancera, Ricardo L., Moolhuijzen, Paula M., Hane, James K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fungal plant-pathogens promote infection of their hosts through the release of ‘effectors’—a broad class of cytotoxic or virulence-promoting molecules. Effectors may be recognised by resistance or sensitivity receptors in the host, which can determine disease outcomes. Accurate prediction of effectors remains a major challenge in plant pathology, but if achieved will facilitate rapid improvements to host disease resistance. This study presents a novel tool and pipeline for the ranking of predicted effector candidates—Predector—which interfaces with multiple software tools and methods, aggregates disparate features that are relevant to fungal effector proteins, and applies a pairwise learning to rank approach. Predector outperformed a typical combination of secretion and effector prediction methods in terms of ranking performance when applied to a curated set of confirmed effectors derived from multiple species. We present Predector ( https://github.com/ccdmb/predector ) as a useful tool for the ranking of predicted effector candidates, which also aggregates and reports additional supporting information relevant to effector and secretome prediction in a simple, efficient, and reproducible manner.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-99363-0