Probing the potential of structured and surface functionalized tools for dry cold forging of aluminium
In order to reduce friction and wear in cold forging of aluminium and its alloys a tremendous amount of lubricants is used. The main task of the liquid lubricants is the separation of tool and workpiece surfaces to avoid adhesion and abrasion. From an ecological and economical point of view, a reduc...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to reduce friction and wear in cold forging of aluminium and its alloys a tremendous amount of lubricants is used. The main task of the liquid lubricants is the separation of tool and workpiece surfaces to avoid adhesion and abrasion. From an ecological and economical point of view, a reduction of the consumption of lubricants is meaningful. Novel surface modification techniques have been investigated to enable dry cold forming. In previous work, a reduced wear by adhesion of aluminium to an AISI H11 ESR tool steel surface was detected for a combination of laser polishing and a subsequent surface functionalization. Here, structured surfaces combined with surface functionalization are investigated regarding their wear behaviour. Therefore, different structures are realized on AISI H11 ESR tool steel surfaces by laser structuring. These structures are aligned parallel and perpendicular to the material flow direction. Furthermore, different structure depths are generated. It is evident that the laser induced surface melting causes both, a reduced micro roughness as well as a homogenized elementary distribution. Moreover, the surfaces are functionalized with an octadecylphosphonic acid selfassembled monolayer (C18PA-SAM). The SAM’s distal alkyl termini functionalize the tool steel surface und thus only weak van-der-Waals interactions are present in the aluminium-tool steel interface rendering an interaction, which is expected to be similar to the interaction in conventionally lubricated aluminium forming. Finally, the surfaces are appraised regarding their wear behaviour in a compression-torsion-wear tribometer. The different experimental results document the potential of the here investigated combined tool surface modification. Although, the performance of a lubricated process is not completely reached a reduction in friction and wear can be achieved compared to unmodified tools. |
---|---|
ISSN: | 2261-236X 2274-7214 2261-236X |
DOI: | 10.1051/matecconf/201819014010 |