Carbon Footprint Modeling of a Clinical Lab
Modeling of a clinical lab carbon footprint is performed in this study from the aspects of electricity, water, gas consumption and waste production from lab instruments. These environmental impact indicators can be expressed in the form of the CO2 equivalent. For each type of clinical test, the corr...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2018-11, Vol.11 (11), p.3105 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Modeling of a clinical lab carbon footprint is performed in this study from the aspects of electricity, water, gas consumption and waste production from lab instruments. These environmental impact indicators can be expressed in the form of the CO2 equivalent. For each type of clinical test, the corresponding consumption of energy resources and the production of plastics and papers are taken into consideration. In addition, the basic lab infrastructures such as heating, ventilation, air-conditioning (HVAC) systems, lights, and computers also contribute to the environmental impact. Human comfort is to be taken into account when optimizing the operation of lab instruments, and is related to the operation of HVAC and lighting systems. The detailed modeling takes into consideration the types of clinical tests, operating times, and instrument specifications. Two ways of disposing waste are classified. Moreover, the indoor environment is modeled. A case study of the Biochrom 30+ amino acid analyzer physiological system in Alder Hey Children’s Hospital is carried out, and the methods of mitigating the overall environmental impacts are discussed. Furthermore, the influence of climate on the results is investigated by using the climate data in Liverpool and Athens in October. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en11113105 |