An Automated Sitting Posture Recognition System Utilizing Pressure Sensors

Prolonged sitting with poor posture can lead to various health problems, including upper back pain, lower back pain, and cervical pain. Maintaining proper sitting posture is crucial for individuals while working or studying. Existing pressure sensor-based systems have been proposed to recognize sitt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2023-06, Vol.23 (13), p.5894
Hauptverfasser: Tsai, Ming-Chih, Chu, Edward T-H, Lee, Chia-Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prolonged sitting with poor posture can lead to various health problems, including upper back pain, lower back pain, and cervical pain. Maintaining proper sitting posture is crucial for individuals while working or studying. Existing pressure sensor-based systems have been proposed to recognize sitting postures, but their accuracy ranges from 80% to 90%, leaving room for improvement. In this study, we developed a sitting posture recognition system called SPRS. We identified key areas on the chair surface that capture essential characteristics of sitting postures and employed diverse machine learning technologies to recognize ten common sitting postures. To evaluate the accuracy and usability of SPRS, we conducted a ten-minute sitting session with arbitrary postures involving 20 volunteers. The experimental results demonstrated that SPRS achieved an impressive accuracy rate of up to 99.1% in recognizing sitting postures. Additionally, we performed a usability survey using two standard questionnaires, the System Usability Scale (SUS) and the Questionnaire for User Interface Satisfaction (QUIS). The analysis of survey results indicated that SPRS is user-friendly, easy to use, and responsive.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23135894