Detection of Interaction Effects in a Nonparametric Concurrent Regression Model
Many methods have been developed to study nonparametric function-on-function regression models. Nevertheless, there is a lack of model selection approach to the regression function as a functional function with functional covariate inputs. To study interaction effects among these functional covariat...
Gespeichert in:
Veröffentlicht in: | Entropy (Basel, Switzerland) Switzerland), 2023-09, Vol.25 (9), p.1327 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many methods have been developed to study nonparametric function-on-function regression models. Nevertheless, there is a lack of model selection approach to the regression function as a functional function with functional covariate inputs. To study interaction effects among these functional covariates, in this article, we first construct a tensor product space of reproducing kernel Hilbert spaces and build an analysis of variance (ANOVA) decomposition of the tensor product space. We then use a model selection method with the L1 criterion to estimate the functional function with functional covariate inputs and detect interaction effects among the functional covariates. The proposed method is evaluated using simulations and stroke rehabilitation data. |
---|---|
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e25091327 |