Detection of Interaction Effects in a Nonparametric Concurrent Regression Model

Many methods have been developed to study nonparametric function-on-function regression models. Nevertheless, there is a lack of model selection approach to the regression function as a functional function with functional covariate inputs. To study interaction effects among these functional covariat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2023-09, Vol.25 (9), p.1327
Hauptverfasser: Pan, Rui, Wang, Zhanfeng, Wu, Yaohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many methods have been developed to study nonparametric function-on-function regression models. Nevertheless, there is a lack of model selection approach to the regression function as a functional function with functional covariate inputs. To study interaction effects among these functional covariates, in this article, we first construct a tensor product space of reproducing kernel Hilbert spaces and build an analysis of variance (ANOVA) decomposition of the tensor product space. We then use a model selection method with the L1 criterion to estimate the functional function with functional covariate inputs and detect interaction effects among the functional covariates. The proposed method is evaluated using simulations and stroke rehabilitation data.
ISSN:1099-4300
1099-4300
DOI:10.3390/e25091327