Building-integrated photovoltaic (BIPV) systems: A science mapping approach

Solar energy is one of the most important renewable energy sources due to its wide availability and applicability. One way to use this resource is by building-integrated photovoltaics (BIPV). Therefore, it is essential to develop a scientific map of BIPV systems and a comprehensive review of the sci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS energy 2023-01, Vol.11 (6), p.1131-1152
Hauptverfasser: Zarate-Perez, Eliseo, Grados, Juan, Rubiños, Santiago, Grados-Espinoza, Herbert, Astocondor-Villar, Jacob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solar energy is one of the most important renewable energy sources due to its wide availability and applicability. One way to use this resource is by building-integrated photovoltaics (BIPV). Therefore, it is essential to develop a scientific map of BIPV systems and a comprehensive review of the scientific literature that identifies future research directions. For that reason, the bibliometric research methodology enables the quantification and evaluation of the performance, quality and influence of the generated maps and their elements. In this regard, an analysis of the scientific production related to BIPV, indexed from 2001 to 2022, was carried out using the Scopus database. This was done using a scientific mapping approach via the SciMAT tool to analyze the co-occurrence of terms through clustering techniques. The BIPV was integrated with the themes of buildings, investments, numerical models, office buildings, photovoltaic modules, roofs, solar cells and zero-energy buildings. As photovoltaic technology progresses, the production of flexible PV elements is increasing in lieu of silicon substrate-based PV elements, and this is of current scientific interest. The evaluations of BIPVs in various climatic contexts are encouraging in warm and sunny climates. BIPVs demonstrated high-energy generation, while in temperate climates, BIPV windows exhibited a reduction in heating and cooling loads, indicating notable efficiency. Despite significant benefits, BIPVs face challenges such as upfront costs, integration complexities and durability concerns. Therefore, silicon solar cells are considered a cross-cutting theme within the BIPV research field. It is highlighted that this study provides a comprehensive scientific mapping and critical review of the literature in the field of BIPV systems. This bibliometric analysis not only quantifies the performance and quality of the generated maps but also identifies key thematic areas that have evolved.
ISSN:2333-8334
2333-8334
DOI:10.3934/energy.2023052