Modified Pearson correlation coefficient for two-color imaging in spherocylindrical cells

The revolution in fluorescence microscopy enables sub-diffraction-limit ("superresolution") localization of hundreds or thousands of copies of two differently labeled proteins in the same live cell. In typical experiments, fluorescence from the entire three-dimensional (3D) cell body is pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics 2018-11, Vol.19 (1), p.428-428, Article 428
Hauptverfasser: Mohapatra, Sonisilpa, Weisshaar, James C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The revolution in fluorescence microscopy enables sub-diffraction-limit ("superresolution") localization of hundreds or thousands of copies of two differently labeled proteins in the same live cell. In typical experiments, fluorescence from the entire three-dimensional (3D) cell body is projected along the z-axis of the microscope to form a 2D image at the camera plane. For imaging of two different species, here denoted "red" and "green", a significant biological question is the extent to which the red and green spatial distributions are positively correlated, anti-correlated, or uncorrelated. A commonly used statistic for assessing the degree of linear correlation between two image matrices R and G is the Pearson Correlation Coefficient (PCC). PCC should vary from - 1 (perfect anti-correlation) to 0 (no linear correlation) to + 1 (perfect positive correlation). However, in the special case of spherocylindrical bacterial cells such as E. coli or B. subtilis, we show that the PCC fails both qualitatively and quantitatively. PCC returns the same + 1 value for 2D projections of distributions that are either perfectly correlated in 3D or completely uncorrelated in 3D. The PCC also systematically underestimates the degree of anti-correlation between the projections of two perfectly anti-correlated 3D distributions. The problem is that the projection of a random spatial distribution within the 3D spherocylinder is non-random in 2D, whereas PCC compares every matrix element of R or G with the constant mean value [Formula: see text] or [Formula: see text]. We propose a modified Pearson Correlation Coefficient (MPCC) that corrects this problem for spherocylindrical cell geometry by using the proper reference matrix for comparison with R and G. Correct behavior of MPCC is confirmed for a variety of numerical simulations and on experimental distributions of HU and RNA polymerase in live E. coli cells. The MPCC concept should be generalizable to other cell shapes.
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-018-2444-3