A hybrid recommendation algorithm based on user nearest neighbor model

In the realm of e-commerce, personalized recommendations are a crucial component in enhancing user experience and optimizing sales efficiency. To address the inherent sparsity challenge prevalent in collaborative filtering algorithms within personalized recommendation systems, we propose a novel hyb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-07, Vol.14 (1), p.17119-14, Article 17119
Hauptverfasser: Lv, Sheng, Wang, Jiabin, Deng, Fan, Yan, Penggui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the realm of e-commerce, personalized recommendations are a crucial component in enhancing user experience and optimizing sales efficiency. To address the inherent sparsity challenge prevalent in collaborative filtering algorithms within personalized recommendation systems, we propose a novel hybrid e-commerce recommendation algorithm based on the User-Nearest-Neighbor model. By integrating the user nearest neighbor model with other recommendation algorithms, this approach effectively mitigates data sparsity and facilitates a more nuanced understanding of the user-product relationship, consequently elevating recommendation quality and enhancing user experience. Taking into account considerations such as data scale and recommendation performance, we conducted experiments utilizing the Spark distributed platform. Empirical findings demonstrate the superiority of our hybrid algorithm over standalone collaborative filtering algorithms across various recommendation indicators.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-66393-3