Collagenase Activity of Bromelain Immobilized at Gold Nanoparticle Interfaces for Therapeutic Applications
Bromelain (Bro) is a multiprotein complex extracted from the pineapple plant Ananas comosus, composed of at least eight cysteine proteases. Bro has a wide range of applications in medicine and industry, where the stability of its active proteases is always a major concern. The present study describe...
Gespeichert in:
Veröffentlicht in: | Pharmaceutics 2021-07, Vol.13 (8), p.1143, Article 1143 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bromelain (Bro) is a multiprotein complex extracted from the pineapple plant Ananas comosus, composed of at least eight cysteine proteases. Bro has a wide range of applications in medicine and industry, where the stability of its active proteases is always a major concern. The present study describes the improvement of stability and gain of specific activity in the enzymatic content of Bro immobilized on gold nanoparticles (GNPs). GNPs were synthesized in situ using Bro as the reducing and stabilizing agents and characterized by surface plasmon resonance and transmission electron microscopy. Consistent with the structural changes observed by circular dichroism analysis, the association with GNPs affected enzyme activity. The active Bro immobilized on GNPs (NanoBro) remained stable under storage and gained thermal stability consistent with a thermophilic enzyme. Proteolytic assays were performed on type I collagen membranes using fluorescence spectroscopy of O-phthaldialdehyde (OPA), changes in the membrane superficial structure, and topography by scanning electron microscopy, FTIR, and scanning laser confocal microscopy. Another characteristic of the NanoBro observed was the significant increase in susceptibility to the inhibitory effect of E-64, indicating a gain in cysteine protease activity. The higher stability and specific activity of NanoBro contributed to the broadening and improvement of Bro applications. |
---|---|
ISSN: | 1999-4923 1999-4923 |
DOI: | 10.3390/pharmaceutics13081143 |