Four-dimensional imaging of lattice dynamics using ab-initio simulation
Time-resolved mapping of lattice dynamics in real- and momentum-space is essential to better understand several ubiquitous phenomena such as heat transport, displacive phase transition, thermal conductivity, and many more. In this regard, time-resolved diffraction and microscopy methods are employed...
Gespeichert in:
Veröffentlicht in: | npj computational materials 2021-01, Vol.7 (1), p.1-7, Article 7 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Time-resolved mapping of lattice dynamics in real- and momentum-space is essential to better understand several ubiquitous phenomena such as heat transport, displacive phase transition, thermal conductivity, and many more. In this regard, time-resolved diffraction and microscopy methods are employed to image the induced lattice dynamics within a pump–probe configuration. In this work, we demonstrate that inelastic scattering methods, with the aid of theoretical simulation, are competent to provide similar information as one could obtain from the time-resolved diffraction and imaging measurements. To illustrate the robustness of the proposed method, our simulated result of lattice dynamics in germanium is in excellent agreement with the time-resolved x-ray diffuse scattering measurement performed using x-ray free-electron laser. For a given inelastic scattering data in energy and momentum space, the proposed method is useful to image in-situ lattice dynamics under different environmental conditions of temperature, pressure, and magnetic field. Moreover, the technique will profoundly impact where time-resolved diffraction within the pump–probe setup is not feasible, for instance, in inelastic neutron scattering. |
---|---|
ISSN: | 2057-3960 2057-3960 |
DOI: | 10.1038/s41524-020-00475-4 |