Force and Sound Pressure Sensors Used for Modeling the Impact of the Firearm with a Suppressor

In this paper, a mathematical model for projectiles shooting in any direction based on sensors distributed stereoscopically is put forward. It is based on the characteristics of a shock wave around a supersonic projectile and acoustical localization. Wave equations for an acoustic monopole point sou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-02, Vol.10 (3), p.961
Hauptverfasser: Selech, Jaroslaw, Kilikevičius, Artūras, Kilikevičienė, Kristina, Borodinas, Sergejus, Matijošius, Jonas, Vainorius, Darius, Marcinkiewicz, Jacek, Staszak, Zaneta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a mathematical model for projectiles shooting in any direction based on sensors distributed stereoscopically is put forward. It is based on the characteristics of a shock wave around a supersonic projectile and acoustical localization. Wave equations for an acoustic monopole point source of a directed effect used for physical interpretation of pressure as an acoustic phenomenon. Simulation and measurements of novel versatile mechanical and acoustical damping system (silencer), which has both a muzzle break and silencer properties studied in this paper. The use of the proposed damping system can have great influence on the acoustic pressure field intensity from the shooter. A silencer regarded as an acoustic transducer and multi-holes waveguide with a chamber. Wave equations for an acoustic monopole point source of a directed effect used for the physical interpretation of pressure as an acoustic phenomenon. The numerical simulation results of the silencer with different configurations presented allow trends to be established. A measurement chain was used to compare the simulation results with the experimental ones. The modeling and experimental results showed an increase in silencer chamber volume results in a reduction of recorded pressure within the silencer chamber.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10030961