Force and Sound Pressure Sensors Used for Modeling the Impact of the Firearm with a Suppressor
In this paper, a mathematical model for projectiles shooting in any direction based on sensors distributed stereoscopically is put forward. It is based on the characteristics of a shock wave around a supersonic projectile and acoustical localization. Wave equations for an acoustic monopole point sou...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2020-02, Vol.10 (3), p.961 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a mathematical model for projectiles shooting in any direction based on sensors distributed stereoscopically is put forward. It is based on the characteristics of a shock wave around a supersonic projectile and acoustical localization. Wave equations for an acoustic monopole point source of a directed effect used for physical interpretation of pressure as an acoustic phenomenon. Simulation and measurements of novel versatile mechanical and acoustical damping system (silencer), which has both a muzzle break and silencer properties studied in this paper. The use of the proposed damping system can have great influence on the acoustic pressure field intensity from the shooter. A silencer regarded as an acoustic transducer and multi-holes waveguide with a chamber. Wave equations for an acoustic monopole point source of a directed effect used for the physical interpretation of pressure as an acoustic phenomenon. The numerical simulation results of the silencer with different configurations presented allow trends to be established. A measurement chain was used to compare the simulation results with the experimental ones. The modeling and experimental results showed an increase in silencer chamber volume results in a reduction of recorded pressure within the silencer chamber. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10030961 |