Multi-decadal climate variability and satellite biases have amplified model-observation discrepancies in tropical troposphere warming estimates
Most coupled model simulations substantially overestimate tropical tropospheric warming trends over the satellite era, undermining the reliability of model-projected future climate change. Here we show that the model-observation discrepancy over the satellite era has arisen in large part from multi-...
Gespeichert in:
Veröffentlicht in: | Communications earth & environment 2024-06, Vol.5 (1), p.342-8, Article 342 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Most coupled model simulations substantially overestimate tropical tropospheric warming trends over the satellite era, undermining the reliability of model-projected future climate change. Here we show that the model-observation discrepancy over the satellite era has arisen in large part from multi-decadal climate variability and residual biases in the satellite record. Analyses indicate that although the discrepancy is closely linked to multi-decadal variability in the tropical Pacific sea surface temperatures, the overestimation remains over the satellite era in model simulations forced by observed time-varying sea surface temperatures with a La Niña-like pattern. Regarding moist thermodynamic processes governing tropical tropospheric warming, however, we find a broad model-observation consistency over a post-war period, suggesting that residual biases in the satellite record may contribute to model-observation discrepancy. These results underscore the importance of sustaining an accurate long-term observing system as well as constraining the model representation of tropical Pacific sea surface temperature change and variability. |
---|---|
ISSN: | 2662-4435 2662-4435 |
DOI: | 10.1038/s43247-024-01510-8 |