Subsidized veterinary extension services may reduce antimicrobial resistance in aquaculture

Antibiotic use in aquaculture has become very controversial vis-à-vis driving antimicrobial resistance (AMR) in aquatic bacterial populations. The AMR trends in fish pathogens in Hong Kong over a four-year period suggests that providing small stakeholder farmers with free veterinary advice on fish h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-06, Vol.13 (1), p.10118-10118, Article 10118
Hauptverfasser: St-Hilaire, Sophie, Chan, Stephen Chi Ho, Lim, Kwok Zu, MacKinnon, Brett, Cheng, Tzu Hsuan, Cheng, Ka Po Fiona, Leung, Aaron Chi Fai, Lam, Sabrina Hei Yuet, Bhardwaj, Vidya, Chan, Olivia Sinn Kay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Antibiotic use in aquaculture has become very controversial vis-à-vis driving antimicrobial resistance (AMR) in aquatic bacterial populations. The AMR trends in fish pathogens in Hong Kong over a four-year period suggests that providing small stakeholder farmers with free veterinary advice on fish health issues and treatments, as well as subsidized quality-assured medicines, likely reduced AMR. We observed a dramatic reduction in the proportion of bacteria resistant to oxolinic acid, oxytetracycline, and florfenicol on local aquaculture farms between 2018 and 2021. These decreases coincided with either a change in antibiotic use practices on farms (i.e. with oxytetracycline), or the reduction in the use of specific drugs (i.e. oxolinic acid and florfenicol). We did not observe a similar decline in the resistance pattern to commonly used antibiotics in human medicine in the same fish bacteria. Resistance to these products, which were unlikely to be used by the farmers in our study, was very high. Our finding suggests that both human and veterinary use of antibiotics in Hong Kong may have an influence on the AMR of bacteria in the aquatic environment.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-37262-2