Boundary asymptotics of the relative Bergman kernel metric for hyperelliptic curves

We survey variations of the Bergman kernel and their asymptotic behaviors at degeneration. For a Legendre family of elliptic curves, the curvature form of the relative Bergman kernel metric is equal to the Poincaré metric on ℂ \ {0,1}. The cases of other elliptic curves are either the same or trivia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex manifolds (Warsaw, Poland) Poland), 2017-02, Vol.4 (1), p.7-15
1. Verfasser: Dong, Robert Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We survey variations of the Bergman kernel and their asymptotic behaviors at degeneration. For a Legendre family of elliptic curves, the curvature form of the relative Bergman kernel metric is equal to the Poincaré metric on ℂ \ {0,1}. The cases of other elliptic curves are either the same or trivial. Two proofs depending on elliptic functions’ special properties and Abelian differentials’ Taylor expansions are discussed, respectively. For a holomorphic family of hyperelliptic nodal or cuspidal curves and their Jacobians, we announce our results on the Bergman kernel asymptotics near various singularities. For genus-two curves particularly, asymptotic formulas with precise coefficients involving the complex structure information are written down explicitly.
ISSN:2300-7443
2300-7443
DOI:10.1515/coma-2017-0002