Noncontractible loop states from a partially flat band in a photonic borophene lattice
Flat band systems are commonly associated with compact localized states (CLSs) that arise from the macroscopic degeneracy of eigenstates at the flat band energy. However, in the case of singular flat bands, conventional localized flat band states are incomplete, leading to the existence of noncontra...
Gespeichert in:
Veröffentlicht in: | Nanophotonics (Berlin, Germany) Germany), 2023-08, Vol.12 (17), p.3409-3415 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Flat band systems are commonly associated with compact localized states (CLSs) that arise from the macroscopic degeneracy of eigenstates at the flat band energy. However, in the case of singular flat bands, conventional localized flat band states are incomplete, leading to the existence of noncontractible loop states (NLSs) with nontrivial real-space topology. In this study, we experimentally and analytically demonstrate the existence of NLSs in a 2D photonic borophene lattice without a CLS counterpart, owing to a band that is flat only along high-symmetry lines and dispersive along others. Our findings challenge the conventional notion that NLSs are necessarily linked to robust boundary modes due to a bulk-boundary correspondence. Protected by the band flatness that originates from band touching, NLSs play a significant role in investigating the fundamental physics of flat band systems. |
---|---|
ISSN: | 2192-8614 2192-8606 2192-8614 |
DOI: | 10.1515/nanoph-2023-0222 |