A discrete-time dual risk model with dependence based on a Poisson INAR(1) process

In this paper, we consider an extension of the classical discrete-time dual risk model, in which the first-order integer-valued autoregressive (INAR(1)) process with Poisson distributed innovations is utilized to fit the temporal dependence between the number of gains for each period. We derive the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics 2022-01, Vol.7 (12), p.20823-20837
Hauptverfasser: Guan, Lihong, Wang, Xiaohong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider an extension of the classical discrete-time dual risk model, in which the first-order integer-valued autoregressive (INAR(1)) process with Poisson distributed innovations is utilized to fit the temporal dependence between the number of gains for each period. We derive the explicit expression for a function that allows us to find the Lundberg adjustment coefficient and obtain the Lundberg approximation formula for ruin probability. Some numerical examples are provided to illustrate our main results.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.20221141