A discrete-time dual risk model with dependence based on a Poisson INAR(1) process
In this paper, we consider an extension of the classical discrete-time dual risk model, in which the first-order integer-valued autoregressive (INAR(1)) process with Poisson distributed innovations is utilized to fit the temporal dependence between the number of gains for each period. We derive the...
Gespeichert in:
Veröffentlicht in: | AIMS mathematics 2022-01, Vol.7 (12), p.20823-20837 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider an extension of the classical discrete-time dual risk model, in which the first-order integer-valued autoregressive (INAR(1)) process with Poisson distributed innovations is utilized to fit the temporal dependence between the number of gains for each period. We derive the explicit expression for a function that allows us to find the Lundberg adjustment coefficient and obtain the Lundberg approximation formula for ruin probability. Some numerical examples are provided to illustrate our main results. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.20221141 |