A nonlinear Korn inequality on a surface with an explicit estimate of the constant
A nonlinear Korn inequality on a surface estimates a distance between a surface $\theta (\omega )$ and another surface $\phi (\omega )$ in terms of distances between their fundamental forms in the space $L^p(\omega )$, $1.We establish a new inequality of this type. The novelty is that the immersion...
Gespeichert in:
Veröffentlicht in: | Comptes rendus. Mathématique 2021-03, Vol.359 (2), p.105-111 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A nonlinear Korn inequality on a surface estimates a distance between a surface $\theta (\omega )$ and another surface $\phi (\omega )$ in terms of distances between their fundamental forms in the space $L^p(\omega )$, $1.We establish a new inequality of this type. The novelty is that the immersion $\theta $ belongs to a specific set of mappings of class $\mathcal{C}^1$ from $\overline{\omega }$ into $\mathbb{R}^3$ with a unit vector field also of class $\mathcal{C}^1$ over $\overline{\omega }$. |
---|---|
ISSN: | 1778-3569 1778-3569 |
DOI: | 10.5802/crmath.122 |