Intraspecific Relationships and Nest Mound Shape Are Affected by Habitat Features in Introduced Populations of the Red Wood Ant Formica paralugubris
Ants belonging to the group build large nest mounds, which aid their survival during severe winters. We investigated whether different environmental features of the habitats affected the nest mound shape and the population structure. We assessed the shape of all the nest mounds and mapped inter-nest...
Gespeichert in:
Veröffentlicht in: | Insects (Basel, Switzerland) Switzerland), 2022-02, Vol.13 (2), p.198 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ants belonging to the
group build large nest mounds, which aid their survival during severe winters. We investigated whether different environmental features of the habitats affected the nest mound shape and the population structure. We assessed the shape of all the nest mounds and mapped inter-nest trails connecting mounds for three imported populations of
in three forest habitats: fir-dominated, beech-dominated, and a mixture of fir and beech. Single-nest mounds were averagely smaller and flatter in the beech-dominated forest, probably because of lighter building materials. Nonetheless, by summing the volumes of all interconnected nests, the size was similar among all three sites. In fir- and beech-dominated forests, large nests were also central in the networks, suggesting a central place foraging model with these nests as reference. We finally performed aggression tests, and found that aggressiveness was significantly higher among nests belonging to the same population than between populations. The results highlight the plasticity of the species to adapt nest and colony structure to different environments. Additionally, it appears that none of these populations is unicolonial, as observed in various alpine sites, there and the observed patterns of aggression are coherent with the 'nasty neighbor' effect. |
---|---|
ISSN: | 2075-4450 2075-4450 |
DOI: | 10.3390/insects13020198 |