Three Lessons from Accelerating Scientific Insight Discovery via Visual Querying

Exploratory data analysis is a crucial part of data-driven scientific discovery. Yet, the process of discovering insights from visualization can be a manual and painstaking process. This article discusses some of the lessons we learned from working with scientists in designing visual data exploratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Patterns (New York, N.Y.) N.Y.), 2020-10, Vol.1 (7), p.100126-100126, Article 100126
Hauptverfasser: Lee, Doris Jung-Lin, Siddiqui, Tarique, Karahalios, Karrie, Parameswaran, Aditya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exploratory data analysis is a crucial part of data-driven scientific discovery. Yet, the process of discovering insights from visualization can be a manual and painstaking process. This article discusses some of the lessons we learned from working with scientists in designing visual data exploration system, along with design considerations for future tools. Exploratory data analysis is a crucial part of data-driven scientific discovery. Yet, the process of discovering insights from visualization can be a manual and painstaking process. This article discusses some of the lessons we learned from working with scientists in designing visual data exploration system, along with design considerations for future tools.
ISSN:2666-3899
2666-3899
DOI:10.1016/j.patter.2020.100126