Optimal Physics Parameterization Scheme Combination of the Weather Research and Forecasting Model for Seasonal Precipitation Simulation over Ghana
Seasonal predictions of precipitation, among others, are important to help mitigate the effects of drought and floods on agriculture, hydropower generation, disasters, and many more. This work seeks to obtain a suitable combination of physics schemes of the Weather Research and Forecasting (WRF) mod...
Gespeichert in:
Veröffentlicht in: | Advances in meteorology 2017-01, Vol.2017 (2017), p.1-15 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Seasonal predictions of precipitation, among others, are important to help mitigate the effects of drought and floods on agriculture, hydropower generation, disasters, and many more. This work seeks to obtain a suitable combination of physics schemes of the Weather Research and Forecasting (WRF) model for seasonal precipitation simulation over Ghana. Using the ERA-Interim reanalysis as forcing data, simulation experiments spanning eight months (from April to November) were performed for two different years: a dry year (2001) and a wet year (2008). A double nested approach was used with the outer domain at 50 km resolution covering West Africa and the inner domain covering Ghana at 10 km resolution. The results suggest that the WRF model generally overestimated the observed precipitation by a mean value between 3% and 64% for both years. Most of the scheme combinations overestimated (underestimated) precipitation over coastal (northern) zones of Ghana for both years but estimated precipitation reasonably well over forest and transitional zones. On the whole, the combination of WRF Single-Moment 6-Class Microphysics Scheme, Grell-Devenyi Ensemble Cumulus Scheme, and Asymmetric Convective Model Planetary Boundary Layer Scheme simulated the best temporal pattern and temporal variability with the least relative bias for both years and therefore is recommended for Ghana. |
---|---|
ISSN: | 1687-9309 1687-9317 |
DOI: | 10.1155/2017/7505321 |