Depth and Depth-Based Classification with R Package ddalpha

Following the seminal idea of Tukey (1975), data depth is a function that measures how close an arbitrary point of the space is located to an implicitly defined center of a data cloud. Having undergone theoretical and computational developments, it is now employed in numerous applications with class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical software 2019, Vol.91 (5), p.1-46
Hauptverfasser: Pokotylo, Oleksii, Mozharovskyi, Pavlo, Dyckerhoff, Rainer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Following the seminal idea of Tukey (1975), data depth is a function that measures how close an arbitrary point of the space is located to an implicitly defined center of a data cloud. Having undergone theoretical and computational developments, it is now employed in numerous applications with classification being the most popular one. The R package ddalpha is a software directed to fuse experience of the applicant with recent achievements in the area of data depth and depth-based classification. ddalpha provides an implementation for exact and approximate computation of most reasonable and widely applied notions of data depth. These can be further used in the depth-based multivariate and functional classifiers implemented in the package, where the DDα-procedure is in the main focus. The package is expandable with user-defined custom depth methods and separators. The implemented functions for depth visualization and the built-in benchmark procedures may also serve to provide insights into the geometry of the data and the quality of pattern recognition.
ISSN:1548-7660
1548-7660
DOI:10.18637/jss.v091.i05