Development and validation of derivative UV spectroscopic method for simultaneous estimation of nicotinamide and tretinoin in their binary mixtures and pharmaceutical preparations

An accurate, precise, sensitive, and simple spectroscopic method was developed and validated for simultaneous quantification analysis of tretinoin (TRT) and nicotinamide (NCT) with a ratio of 1:40 (TRT: NCT) in a synthetic mixture from dermal pharmaceutical preparations (solution and cream). Wavelen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC chemistry 2022-03, Vol.16 (1), p.15-15, Article 15
Hauptverfasser: Sarkis, Nazira, Sawan, Abdulkader
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An accurate, precise, sensitive, and simple spectroscopic method was developed and validated for simultaneous quantification analysis of tretinoin (TRT) and nicotinamide (NCT) with a ratio of 1:40 (TRT: NCT) in a synthetic mixture from dermal pharmaceutical preparations (solution and cream). Wavelengths were chosen in the first and second-order derivatives which are valid for the determination of NCT with the existence of TRT and excipients of the tested pharmaceutical preparations. Wavelength 253 nm was picked for the first-order derivative. Wavelengths 245 and 269 nm were picked for the second derivative. All previous wavelengths were zero-crossing points for TRT and its pharmaceutical preparations. Zero-order spectroscopy was used to determine TRT at the wavelength 348 nm, where no interference with NCT or any substance in the previous pharmaceutical preparation. The linearity range was studied and found to be 20–120 μg/mL and 0.5–5.0 μg/mL for NCT and TRT respectively. The correlation coefficient was 0.9995–0.9999 for NCT and 0.9998–0.9999 for TRT. The limit of detection (LOD) and the limit of quantification (LOQ) of NCT were 1.510 μg/mL and 4.590 μg/mL respectively at the wavelength 269 nm of the second-order derivative.
ISSN:2661-801X
2661-801X
DOI:10.1186/s13065-022-00809-x