HEAT TRANSFER DURING LIQUID FILTRATION IN AN ANNULAR CHANNEL FILLED WITH POROUS MEDIUM

The relevance of the work is caused by the wide use of porous media, both in the design and optimization of compact heat exchangers and in the engineering calculations of the characteristics of heat and mass transfer in the channels with a grainy medium and when flowing around the bodies immersed in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Izvestiâ Tomskogo politehničeskogo universiteta. Inžiniring georesursov 2021-08, Vol.332 (8), p.126-134
1. Verfasser: Ruslan A. Dekhtyar
Format: Artikel
Sprache:rus
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The relevance of the work is caused by the wide use of porous media, both in the design and optimization of compact heat exchangers and in the engineering calculations of the characteristics of heat and mass transfer in the channels with a grainy medium and when flowing around the bodies immersed in the porous medium. The main aim of the research is the experimental study of heat transfer in an annular channel filled with a granular medium at various modes of liquid filtration; to obtain semi-empirical correlations for heat transfer in the inertial mode of fluid filtration in an annular channel. Objects: annular channel with a porous insert consisting of glass beads of the same diameter with different types of both regular and chaotic pakings. Methods: experimental methods for finding the patterns of heat exchange processes. In experiments, using thermocouples, the temperature of the heated outer wall of the annular channel was measured in four sections and the temperature of the heater at two different points. The temperatures at the inlet to the working station and at the output of it were measured as well. Simultaneously with thermal investigation, the fluid flow was measured when filtering through a porous insert. Porosity was determined by the usual weighty way. In special calibration experiments, the heat losses of the working section were determined separately. The calculation of the heat transfer coefficient was carried out according to the flow of heat to the outer wall of the annular channel, taking into account heat losses and, along the difference in the measured wall temperature and the medium-mass fluid temperature in this section. The paper introduces the results of the experimental study of liquid filtration flow heat exchange with the walls of the annular channel filled with a porous medium at constant heat flux on the outer wall. The study was conducted on ring channels with different widths. The width of the channel was laid either one layer of the balls of one diameter with two types of packages: cubic and rhombohedral, or several layers of balls, but already with arbitrary packaging (from 3 to 10 ball width). When processing the experimental data, hydraulic grain diameter is selected as the determining geometric parameter. It is shown that, depending on the filtration mode, various laws of heat exchange exist through a porous insert. So for the turbulent filtering mode, the obtained data for heat exchange is well summarized by the univ
ISSN:2500-1019
2413-1830
DOI:10.18799/24131830/2021/8/3310