Virulomic Analysis of Multidrug-Resistant Klebsiella pneumoniae Isolates and Experimental Virulence Model Using Danio rerio (Zebrafish)
This study evaluates a possible correlation between multidrug-resistant Klebsiella pneumoniae strains and virulence markers in a Danio rerio (zebrafish) model. Whole-genome sequencing (WGS) was performed on 46 strains from three Brazilian hospitals. All of the isolates were colistin-resistant and ha...
Gespeichert in:
Veröffentlicht in: | Antibiotics (Basel) 2022-11, Vol.11 (11), p.1567 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study evaluates a possible correlation between multidrug-resistant Klebsiella pneumoniae strains and virulence markers in a Danio rerio (zebrafish) model. Whole-genome sequencing (WGS) was performed on 46 strains from three Brazilian hospitals. All of the isolates were colistin-resistant and harbored blaKPC-2. Ten different sequence types (STs) were found; 63% belonged to CC258, 22% to ST340, and 11% to ST16. The virulence factors most frequently found were type 3 fimbriae, siderophores, capsule regulators, and RND efflux-pumps. Six strains were selected for a time-kill experiment in zebrafish embryos: infection by ST16 was associated with a significantly higher mortality rate when compared to non-ST16 strains (52% vs. 29%, p = 0.002). Among the STs, the distribution of virulence factors did not differ significantly except for ST23, which harbored a greater variety of factors than other STs but was not related to a higher mortality rate in zebrafish. Although several virulence factors are described in K. pneumoniae, our study found ST16 to be the only significant predictor of a virulent phenotype in an animal model. Further research is needed to fully understand the correlation between virulence and sequence types. |
---|---|
ISSN: | 2079-6382 2079-6382 |
DOI: | 10.3390/antibiotics11111567 |