An automated stochastic approach to the identification of the protein specificity determinants and functional subfamilies

Recent progress in sequencing and 3 D structure determination techniques stimulated development of approaches aimed at more precise annotation of proteins, that is, prediction of exact specificity to a ligand or, more broadly, to a binding partner of any kind. We present a method, SDPclust, for iden...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithms for molecular biology 2010-07, Vol.5 (1), p.29-29, Article 29
Hauptverfasser: Mazin, Pavel V, Gelfand, Mikhail S, Mironov, Andrey A, Rakhmaninova, Aleksandra B, Rubinov, Anatoly R, Russell, Robert B, Kalinina, Olga V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent progress in sequencing and 3 D structure determination techniques stimulated development of approaches aimed at more precise annotation of proteins, that is, prediction of exact specificity to a ligand or, more broadly, to a binding partner of any kind. We present a method, SDPclust, for identification of protein functional subfamilies coupled with prediction of specificity-determining positions (SDPs). SDPclust predicts specificity in a phylogeny-independent stochastic manner, which allows for the correct identification of the specificity for proteins that are separated on a phylogenetic tree, but still bind the same ligand. SDPclust is implemented as a Web-server http://bioinf.fbb.msu.ru/SDPfoxWeb/ and a stand-alone Java application available from the website. SDPclust performs a simultaneous identification of specificity determinants and specificity groups in a statistically robust and phylogeny-independent manner.
ISSN:1748-7188
1748-7188
DOI:10.1186/1748-7188-5-29