Detection of SARS-CoV-2 infection in the general population by three prevailing rapid antigen tests: cross-sectional diagnostic accuracy study

Rapid antigen diagnostic tests (Ag-RDTs) are the most widely used point-of-care tests for detecting SARS-CoV-2 infection. Since the accuracy may have altered by changes in SARS-CoV-2 epidemiology, indications for testing, sampling and testing procedures, and roll-out of COVID-19 vaccination, we eval...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC medicine 2022-02, Vol.20 (1), p.97-13, Article 97
Hauptverfasser: Venekamp, Roderick P, Veldhuijzen, Irene K, Moons, Karel G M, van den Bijllaardt, Wouter, Pas, Suzan D, Lodder, Esther B, Molenkamp, Richard, Igloi, Zsofi, Wijers, Constantijn, Dos Santos, Claudy Oliveira, Debast, Sylvia B, Bruins, Marjan J, Polad, Khaled, Nagel-Imming, Carla R S, Han, Wanda G H, van de Wijgert, Janneke H H M, van den Hof, Susan, Schuit, Ewoud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rapid antigen diagnostic tests (Ag-RDTs) are the most widely used point-of-care tests for detecting SARS-CoV-2 infection. Since the accuracy may have altered by changes in SARS-CoV-2 epidemiology, indications for testing, sampling and testing procedures, and roll-out of COVID-19 vaccination, we evaluated the performance of three prevailing SARS-CoV-2 Ag-RDTs. In this cross-sectional study, we consecutively enrolled individuals aged >16 years presenting for SARS-CoV-2 testing at three Dutch public health service COVID-19 test sites. In the first phase, participants underwent either BD-Veritor System (Becton Dickinson), PanBio (Abbott), or SD-Biosensor (Roche Diagnostics) testing with routine sampling procedures. In a subsequent phase, participants underwent SD-Biosensor testing with a less invasive sampling method (combined oropharyngeal-nasal [OP-N] swab). Diagnostic accuracies were assessed against molecular testing. Six thousand nine hundred fifty-five of 7005 participants (99%) with results from both an Ag-RDT and a molecular reference test were analysed. SARS-CoV-2 prevalence and overall sensitivities were 13% (188/1441) and 69% (129/188, 95% CI 62-75) for BD-Veritor, 8% (173/2056) and 69% (119/173, 61-76) for PanBio, and 12% (215/1769) and 74% (160/215, 68-80) for SD-Biosensor with routine sampling and 10% (164/1689) and 75% (123/164, 68-81) for SD-Biosensor with OP-N sampling. In those symptomatic or asymptomatic at sampling, sensitivities were 72-83% and 54-56%, respectively. Above a viral load cut-off (≥5.2 log SARS-CoV-2 E-gene copies/mL), sensitivities were 86% (125/146, 79-91) for BD-Veritor, 89% (108/121, 82-94) for PanBio, and 88% (160/182, 82-92) for SD-Biosensor with routine sampling and 84% (118/141, 77-89) with OP-N sampling. Specificities were >99% for all tests in most analyses. Sixty-one per cent of false-negative Ag-RDT participants returned for testing within 14 days (median: 3 days, interquartile range 3) of whom 90% tested positive. Overall sensitivities of three SARS-CoV-2 Ag-RDTs were 69-75%, increasing to ≥86% above a viral load cut-off. The decreased sensitivity among asymptomatic participants and high positivity rate during follow-up in false-negative Ag-RDT participants emphasise the need for education of the public about the importance of re-testing after an initial negative Ag-RDT should symptoms develop. For SD-Biosensor, the diagnostic accuracy with OP-N and deep nasopharyngeal sampling was similar; adopting the more conve
ISSN:1741-7015
1741-7015
DOI:10.1186/s12916-022-02300-9