Modulus of Convexity, the Coeffcient R(1, X), and Normal Structure in Banach Spaces

Let δX(ϵ) and R(1,X) be the modulus of convexity and the Domínguez-Benavides coefficient, respectively. According to these two geometric parameters, we obtain a sufficient condition for normal structure, that is, a Banach space X has normal structure if 2δX(1+ϵ)>max{(R(1,x)-1)ϵ,1-(1-ϵ/R(1,X)-1)}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and Applied Analysis 2008-01, Vol.2008 (2008), p.585-589
Hauptverfasser: Jiao, Hongwei, Wang, Fenghui, Guo, Yunrui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let δX(ϵ) and R(1,X) be the modulus of convexity and the Domínguez-Benavides coefficient, respectively. According to these two geometric parameters, we obtain a sufficient condition for normal structure, that is, a Banach space X has normal structure if 2δX(1+ϵ)>max{(R(1,x)-1)ϵ,1-(1-ϵ/R(1,X)-1)} for some ϵ∈[0,1] which generalizes the known result by Gao and Prus.
ISSN:1085-3375
1687-0409
DOI:10.1155/2008/135873