Modulus of Convexity, the Coeffcient R(1, X), and Normal Structure in Banach Spaces
Let δX(ϵ) and R(1,X) be the modulus of convexity and the Domínguez-Benavides coefficient, respectively. According to these two geometric parameters, we obtain a sufficient condition for normal structure, that is, a Banach space X has normal structure if 2δX(1+ϵ)>max{(R(1,x)-1)ϵ,1-(1-ϵ/R(1,X)-1)}...
Gespeichert in:
Veröffentlicht in: | Abstract and Applied Analysis 2008-01, Vol.2008 (2008), p.585-589 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let δX(ϵ) and R(1,X) be the modulus of convexity and the Domínguez-Benavides coefficient, respectively. According to these two geometric parameters, we obtain a sufficient condition for normal structure, that is, a Banach space X has normal structure if 2δX(1+ϵ)>max{(R(1,x)-1)ϵ,1-(1-ϵ/R(1,X)-1)} for some ϵ∈[0,1] which generalizes the known result by Gao and Prus. |
---|---|
ISSN: | 1085-3375 1687-0409 |
DOI: | 10.1155/2008/135873 |