Solving Fractional Boundary Value Problems with Nonlocal Mixed Boundary Conditions Using Covariant JS-Contractions

This paper investigates the existence, uniqueness, and symmetry of solutions for Φ–Atangana–Baleanu fractional differential equations of order μ∈(1,2] under mixed nonlocal boundary conditions. This is achieved through the use of covariant and contravariant JS-contractions within a generalized framew...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2024-08, Vol.16 (8), p.939
Hauptverfasser: Hussain, Nawab, Alharbi, Nawal, Basendwah, Ghada
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the existence, uniqueness, and symmetry of solutions for Φ–Atangana–Baleanu fractional differential equations of order μ∈(1,2] under mixed nonlocal boundary conditions. This is achieved through the use of covariant and contravariant JS-contractions within a generalized framework of a sequential extended bipolar parametric metric space. As a consequence, we obtain the results on covariant and contravariant Ćirić, Chatterjea, Kannan, and Reich contractions as corollaries. Additionally, we substantiate our fixed-point findings with specific examples and derive similar results in the setting of sequential extended fuzzy bipolar metric space.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym16080939