DSCMF: prediction of LncRNA-disease associations based on dual sparse collaborative matrix factorization

In the development of science and technology, there are increasing evidences that there are some associations between lncRNAs and human diseases. Therefore, finding these associations between them will have a huge impact on our treatment and prevention of some diseases. However, the process of findi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics 2021-05, Vol.22 (Suppl 3), p.241-241, Article 241
Hauptverfasser: Liu, Jin-Xing, Gao, Ming-Ming, Cui, Zhen, Gao, Ying-Lian, Li, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the development of science and technology, there are increasing evidences that there are some associations between lncRNAs and human diseases. Therefore, finding these associations between them will have a huge impact on our treatment and prevention of some diseases. However, the process of finding the associations between them is very difficult and requires a lot of time and effort. Therefore, it is particularly important to find some good methods for predicting lncRNA-disease associations (LDAs). In this paper, we propose a method based on dual sparse collaborative matrix factorization (DSCMF) to predict LDAs. The DSCMF method is improved on the traditional collaborative matrix factorization method. To increase the sparsity, the L -norm is added in our method. At the same time, Gaussian interaction profile kernel is added to our method, which increase the network similarity between lncRNA and disease. Finally, the AUC value obtained by the experiment is used to evaluate the quality of our method, and the AUC value is obtained by the ten-fold cross-validation method. The AUC value obtained by the DSCMF method is 0.8523. At the end of the paper, simulation experiment is carried out, and the experimental results of prostate cancer, breast cancer, ovarian cancer and colorectal cancer are analyzed in detail. The DSCMF method is expected to bring some help to lncRNA-disease associations research. The code can access the https://github.com/Ming-0113/DSCMF website.
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-020-03868-w